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Abstract—The predictions of four constitutive theories of viscoplasticity are examined and compared in
uniaxial homogeneous deformations. Each theory s fitted to the same stress~strain data, and both analytical
and numerical methods are employed to highlight similarities and differences between their predictions.

Asymptotic limits are given which represent steady-state behavior of the solutions, and the limits are
used to provide analytical methods for fitting test data. Different manifestations of strain-rate and
stress-rate history effects predicted by the theories are compared, and the theories are shown to share a
significant qualitative bias between responses to stress- and strain-controlled loading.

INTRODUCTION

The demands of an evolving technology and the advent of powerful computational software
have encouraged the continuing development of constitutive equations of inelastic metal
behavior. Development of constitutive theories has found increasing support from concurrent
experiments indicating significant rate-dependence of metal behavior at low, room, and elevated
temperatures. Such rate-dependence is manifested in rate-sensitivity of the yield stress and the
flow stress[i-23], in creep and relaxation behavior[1-3, 24-30], and in the wavespeeds of
propagating plastic waves[31-36]. Various viscoplastic constitutive theories have been
developed in order to represent different facets of the rate- and history-dependent behavior
observed in such experiments, and these theories use different respositories for modeling
inelastic behavior.

In some cases[37-39] the constitutive equations are nonlinear in the strain-rate while in
other cases[40-47] the equations are linear in the strain-rate and nonlinear in stress or strain.
Some theories [48-53] are motivated by material science while other theories[37-47, 54-56]
are primarily phenomenological in their foundations. In the viscoplastic endochronic theory[38,
39] a non-decreasing and rate-dependent parameter is employed to model both rate-dependence
and material-memory for the prior plastic deformation. Alternatively the theory proposed by
Bodner and Partom[45] uses a flow law which depends on the plastic work. Yet another
approach[12, 41-44, 55] proposes that the plastic strain-rate depends on the difference between
the flow stress and the corresponding vaiue of an equilibrium stress-strain curve evaluated at
the same strain.

Because different theories use different repositories for modeling rate-dependence and
memory for plastic deformation, they predict subtly different manifestations of inelastic
behavior. Here the predictions of four visco-plastic theories are examined and compared in
uniaxial homogeneous deformations. Each theory is shown to predict qualitative biases be-
tween responses {o stress- and strain-controlied loading. Asymptotic limits are obtained which
characterize steady-state stress-strain behavior and which are useful in fitting the models to
experimental data.

We examine theories presented by Bodner and Partom[45], Cernocky and Krempl{43, 44],
and Lin and Wu[38). In addition a new version of the endochronic theory of Wu and Yip{39] is
proposed and examined. These theories share a capability of modeling nonlinear rate-depen-
dence of stress—strain behavior, and in the forms presented here each theory models material
behavior as inelastic at all times; no yields surfaces are used. Additional viscoplastic theories
are available, and it is only for practicality that this study is limited to four theories.

Material constants are determined by fitting each model to the same constant strain-rate
stress-strain data suggested by the quasi-static experiments of Krempl[1] and the dynamic
experiments of Albertini and Montagnani[5]; see Table 1. The initial elastic slope is prescribed,
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Table 1. Stress-strain data and responses at 1% strain

Strain-Rate (s~ 1) 10 1072} 69 I177 808

Experimental

Stress (Ksi) 29.3 }32.0 j4z2.8 Qas.0 Jf 52.3

Stress from

Model I (Ksi) 29.8 [31.9 J44.1 Q46.0 |1 49.3

Stress from

Model II (Ksi) 29.9 ]32.2 ]44.3 H46.0 ) 48.8

Stress from
Model IIT (Ksi)

Stress from

Model IV (Ksi) 29.5 J31.6 J44.0 Q46.0 | 49.7

Models I-IV are fitted to data for 304 Stainless Steel at 1% strain
for the strain-rates 105 s~} and 177 s~l. Data for strain-rates
below 10~2 s=1 {a ohtained from [1], and dats for rates above 10-2 s-1
corresponds te {5]. The cold worked data from {5] has been shifted

to match the annealed data from [1] at the strain-rate 10~% -1 in
order to approximate dynamic responses of the annealed material. The
responses of Models I-IV are obtained through numerical solutions of
the constitutive equations.

and each model is fitted to two stress-strain data points at 1% strain using the limits developed
here. The data points are arbitrarily selected to correspond to the strain-rates 10~°s™' and
1775, We also specify the stress-strain slope at the lower (static-rate) data point. Additional
data points may be fitted by using the limits to obtain systems of equations which are
numerically solved for unknown constants. This case is not pursued here because our interest is
comparison of the qualitative behavior of the models rather than curve-fitting quantitative
responses.

THE CONSTITUTIVE EQUATIONS
We designate o and ¢ as the axial stress and infinitesimal strain, respectively; ,, is the
corresponding rate-dependent plastic strain. The theory of Bodner and Partom[45] is arbitrarily
designed as Model I, and the flow law ist

&1 = agexp [~ (FIW,,Jlle))™] sign(o]. (m

A superimposed dot indicates differentation with respect to time, and square brackets denote
functions of the indicated arguments. Sign{o] equals + | corresponding to positive and negative
stress, and W, is the plastic work. F[ ] is a bounded, increasing function, and a,, b, are
positive constants.

For reference Model II denotes the constitutive equation from [43, 44] with the flow law

. __o—-gle
% = Eko- glell @

In (2) E is the constant elastic modulus. The function g{ ] represents an equilibrium stress—
strain response of the material, and it has the appearance of a tensile/compressive stress-strain
curve[43, 57). The initial slope of g[ ] is E, and for convenience and simplicity we take the
slope at large strain to be the constant E,. The difference between the flow stress and
equilibrium response is referred to as the overstress, and k{ ] is a positive decreasing function
of |o — g given in the Appendix.

The rate-dependent endochronic theory of Lin and Wu{38] is designated as Model III, and

tAn alternative finite-deformation representation of Model [ is also presented in [45].
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its flow law is

P 6‘5‘0‘
Et E(l(;-d(,{) @)

where
{ =Klélél. )

Here K{ ] is a nonlinear function of the strain-rate magnitude given in [38], and [ is the
rate-dependent “endochronic time™; ¢, and d, are material constants.

In an alternative endochronic theory Wu and Yip{39] replaced the total strain-rate in (4)
with the plastic strain-rate, and they replaced (3) with a different flow law. Their theory uses a
yield surface while Models I-III do not use yield surfaces. Further the principal advantage of
the original endochronic theories[61, 38] was their freedom from yield surfaces.

Here we propose a new version of the rate-dependent endochronic theory by replacing the
total strain-rate in (4) with the plastic strain-rate as in [39], but without using yield surfaces. We
replace (4) with

f= K{éﬂﬁéﬂi 5)

but we keep the flow law (3), using the endochronic time from (5).
Substitution of (5) into (3) results in an implicit flow law for Model IV

Klé = 2+ 4od) ©

Co|0| '

In (5) and (6) K[ ] may be any positive decreasing function of the plastic strain-rate such that
K[ }Jé,, vanishes when é,,=0. The flow law (6) applies at all times and behavior is always
inelastic.

I this study we use the particular representation of K{ 1 proposed in {38, 39]

K{épis =K.~ K, iﬁ&ixziép& N

For the case of Model III the plastic strain-rate in (7) is replaced by the total strain-rate. For
this particular representation of K{ ] the flow law of Model IV may be rewritten as

i = Ay exp[ —M] signlo]. ®)

CoBt)lU I
The constants A,, B, are related to constants in K[ 1; see the Appendix.

LIMITING BEHAVIOR AT LARGETIME

Constant strain-rate loading

In order to identify the large-time stress-strain behavior predicted by the models we
formally determine limits of their responses as time and strain go to infinity in constant
strain-rate, tensile loading. These limits become approximately satisfied at small stress and
strain and characterize a steady-state facet of stress-strain behavior. To obtain the limits we
use integral-equation representations of the constitutive equations. The same limits may also be
obtained by requiring that &, vanish at infinite strain (time).

Because the stress from Mode! II grows unbounded with infinite time, we examine the infinite-
time limit of the overstress. The limits of integral equations for the overstress and for the
stress-rate[43] produce

{o~gl=(E-E)ékilor~g}] &
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(a)== @

Here braces { } denote the value of their argument at infinite time. These limits indicate that the
growth of stress at large time parallels the growth of g[ ], and that the overstress approaches a
finite bound which depends nonlinearly on the strain-rate. At large time the stress—strain slope
equals the constant E, for any strain-rate (Fig. 3).

For Model I we rewrite the constitutive equation as an integral equation

0=L Eéexp[—J; H[s]ds]dr an
where
_Eay o[ (ELWulsI)"
His= 2% exp [ ( — ) ] 12)
The infinite-time limit of (11) results in the limits for the stress response
{o} = Fl=] (log.[ay/é])™"" (13)
and
do] _
{&-} =0. (14)

In (13) F[ ] is evaluated at W,, =», and F[ ] is a bounded function. The limits indicate that as
strain (time) grows infinite in constant strain-rate loading, the stress approaches a finite bound
which depends nonlinearly on the strain-rate, and the slope vanishes.

For both models III and IV the stress-rates may be written as

0 = Eé - cof(1 + dof[t])"(0/%*D J;' Eé(1+ do{[7])/%dr. (15)

In (15) ¢ and ¢ correspond to (4) or (5) for the respective cases of Models III and IV. From the
limit of (15) we obtain

g2} Lo (16)

The limit (16) is the same for Models I1I and IV despite the different definitions of endochronic
time and the different arguments in K[ ] for these models. From (16) the responses of Models
III and IV eventually have the same constant slope for all strain-rates (Figs. 5 and 6).

Substitution of (16) into (3) and (4) resuits in the infinite-time limit for the response of Model
m

. E
{0’ - U[{o E]} = (Co+ do) K[E] (17)
where
UL €)= —tod (18)

(co+ do) K[€]

Here { = K[€]e for constant strain-rate loading. At large time the growth of stress parallels the
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growth of the linear function U[ ], and the difference between flow stress and U[ ] depends
nonlinearly on the strain-rate.

Substitution of (16) into (5) and (6) results in the infinite-time limit for the response of Model
v

_Ed{]__E
{a CoK[e',.]} coKlé,1] (19)

while the plastic strain-rate in (19) has the value

(=225 0)

Constant stress-rate loading

We also examine the large-time behavior predicted by the theories in constant stress-rate
loading (load-control). For Model II the differential constitutive equation is substituted into the
integrand of the integral equation for overstress[44, 59], or é,, is required to vanish at infinite
time (stress), and we obtain

{a—g}=(E-E,)§k[{a—g}1. @

The limit (10) also applies in constant stress-rate loading, and the combination of (9) and (10) is
consistent with (21) and (10).

The limits (9), (10) and (21) establish correspondence between tests at constant strain-rates and
at constant stress-rates. We consider loading at a strain-rate ¢, and another separate loading at a
constant stress-rate d,,, where d,is related to é, by the slope-limit (10). Because the rates are related
in this way, the overstress limits in (9) and (21) are identical and the large-time responses for these
loadings coincide (Fig. 2). .

The transition to steady-state behavior where the limits apply occurs more gradually in
constant stress-rate loading than in constant strain-rate loading (Fig. 2). To understand the
reason for this we use the definition of total strain, the chain rule, and the flow law to write the
slope for Model II in loading at the constant strain-rate &,

g{= _ a-—g]e[
de - E Ho—glelle @)

In constant stress-rate loading the strain-rate equals (de/do) o, and loading at the stress-rate
6o (0 = E.é,) results in the stress—strain slope

do____E
de 1 4—Z= glel : )
klo - glellE; €,

23)

The difference between the constitutive equations for the slopes in (22) and (23) causes the
difference between transient responses in stress- and strain-control. Similar differences occur
between the slopes and transient responses of the other models in stress- and strain-control
(Fig. 2).

For Models III and IV the limits (16)-(20) also apply in constant stress-rate loading. For
both models the endochronic time has different values in the stress- and strain-controlled tests
with respective rates o, and &, and technically the limits (17, 19) both have different values in
the stress- and strain-controlled tests. However this difference is negligible, and the steady-state
responses approximately coincide in stress- and strain-control (Fig. 2).

The infinite-time limit for the slope of Model I in constant stress-rate loading is
{da} Eog

def = Eay+ o’ (24)
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Large values of a, are required to model the data used here, and the siope in (24) may be
approximated as zero. The limit analogous to (13) but for Model I in stress-control could not be
determined. In the tests with rates g, and ¢, the responses do not merge (Fig. 2).

USE OF THE LIMITS TO FIT DATA

The infinite-time limits provide approximate relationships for the steady-state responses of
the models at small stress and strain. From (9) and (10) we have the approximations

ag-

-8 (F-FE)é
ko= ] (E-E)é 25)
and
do
a—; bad E'. (26)

Numerical solutions indicate that (25) and (26) apply at very small stress and strain (Fig. 3), and
we use these to fit Model II to experimental data.

First experimental flow stress is plotted vs the log of the strain-rate at one fixed value of
strain. The piot is extrapolated to low strain-rates until the stress-log of strain-rate curve turns
flat. This stress level represents an estimate for g[ ] at the fixed strain of interest, and the
process may be repeated to estimate g{ ] at other strains. Relaxation tests may also be used to
estimate values of g[ ] at chosen strains[60). The steady-state slope E, in gf ] is prescribed by
using (26) under the approximation of linear experimental strain-hardening at sufficient strain.

With the representation of g ]} chosen, constants in k[ ] are determined from (25) by
substituting the stresses, strains, and strain-rates of the data points into (25). The number of
data points fitted corresponds to the number of constants in the representation of k{ ], and
because our interest is not quantitative reproduction of data, we use two constants.

For Model I the limit (13) corresponds to W, = », and a very large strain (time) is necessary
for the limit to apply; i.e. for stress to reach its constant bound and slope to vanish, However,
(13) provides an approximate relationship for steady-state behavior at small stress, strain and
plastic work

FIW,]~ o (log.{ad/é])"™. @

Numerical solutions indicate the validity of (27) at infinitesimal strain. Both (13) and (27)
indicate that a, must be chosen larger than the largest strain-rate of interest so that the
log-function is positive. To fit data first a, and b, may be chosen. Then (27) may be used to
determine F[ ] corresponding to experimental values of stress, strain, and plastic work. This
requires estimates of W, for the data points of interest. However in this approach FI[ ] is
determined without any input of the experimental stress-strain slope which the model should
predict at the data points. Different choices for a,, b, result in widely different values of both
F[ ] and the stress-strain slope.

To prescribe the slope we formally differentiate (27) or apply the approximation &,, =0 and
obtain

dF!W..LS W| o (28)
dWﬂ (I-U'IE)

where o’ =dolde. From (28) the stress-strain siope vanishes when F[ ] becomes constant at
large plastic work, and this is consistent with (13).
To fit data we follow [45] and use

FIW,1=fo—fiexp[— 2 W,,]). (29)

Here f, is used as a dimensional coanstant specified in the Appendix. We first choose an
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arbitrary large value or F[ ] at the first (static) data point to be fitted.t This value of F[ ] is
substituted into (28) together with the experimental stress and stress-strain slope of the first
data point. This specifies the slope at the first data point and determines f,. Next f; is
determined from (29) using the preselected value of F[ ] at this data point.

Next (29) is used to compute the vaiue of F[ ] at thj second data point; and with F[ ]
known at two data points, (27) is used to determine the constants a, and by,. From (28) the
representation of F[ ] in (29) allows specifications of the stress-strain slope at only one data
point.

The predicted responses are nearly insensitive to the initial choice of F[ ] at the first data
point. Different choices for the starting value of F[ ] result in different values for the material
constants, but the stress-strain behavior is preserved. However different choices for the
dimensional constant f, and the different representations of F[ ] significantly affect the
curvatures of the responses[47].

For Models III and IV the limits (16) and (17), and (16) and (19) approximately apply at
infinitesimal strain and represent the steady-state behavior of the responses (Figs. 5 and 6). To
fit data an arbitrary value for d, is selected first. Then ¢, is determined by using (16) to
prescribe the experimental slope at the first (static) data point under the approximation of linear
steady-state strain-hardening. Different choices for d, are absorbed by correspondingly
different values of ¢, and the constants in K[ ] while the stress-strain behavior remains
unchanged.

Next K, in (7) is selected as a dimensional constant, and K,, K, are determined by
substituting the stresses, strains, and strain-rates of the two data points into the limits (17) or
(19). Different values of K, are required to fit Models III and IV to the same data. If additional
constants are added to the representation of K{ ] in order to fit more data points, the same
procedure may be employed, and the limits provide a system of equations for the unknown
constants.

For Model IV the plastic strain-rate in (5) is not constant until (16) applies, and the
endochronic time in (19) is not equal to K[é,]¢,. However, only the stress, strain, and
strain-rate are known in experiments; and the endochronic time must be estimated in order to
use (19). To facilitate fitting data we use the approximation

{= Kl[é; e, (30)

and this results in an accurate fit of the experimental data points. The relative difference
between numerical solutions of Model IV and the limit (19) using (30) is approx. 107°% at
infinitesimal strain and at all the strain-rates, and this indicates that (30) is acceptable in (19).

Table 1 lists additional responses of Models I-IV at strain-rates corresponding to experi-
mental data points not used in fitting the models. Although only two data points were fitted, the
particular functions used in the constitutive equations provide reasonable fits of additional
steady-state data points and reasonable representations of the experimental rate-dependence.

BEHAVIOR PREDICTED UNDERJUMPS IN STRAIN-RATE OR STRESS-RATE

We examine the behavior predicted by each theory under instantaneous jump increases
(decreases) in the strain- or stress-rates. The constant strain-rates before and after the jump are
respectively denoted by é” and é*, where é* = 8¢, A strain-rate increase corresponds to & > 1
and a strain-rate decrease with increasing strain corresponds to 0 < & < 1; strain-rate reversal
and unloading correspond to § <0.

From the definition of total strain and the chain rule the siope for each model before the
strain-rate jump is

——=E—E—€E—. 31

“F[ ]is taken large in comparison with the stresses of data points being fitted.
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The superscripts — and + respectively denote values before and after the jump. After the
strain-rate jump the slope for each model is

do* _ - €&
P =F E€.+. 32)

Combining (31) and (32) at the instant of the strain-rate jump gives

e 5245,

At the point where the strain-rate change occurs the plastic strain-rates of Models I, I, IV
are respectively the same both before and after the strain-rate jump; i.e. é,, = é,,. Using this
relationship (33) becomes

For Model III the plastic strain-rate changes with the jump, and (33) with (3) and (4) becomes

do* K{6é” do™\ .
s o5 o

To examine the predictions of the models under jumps in the stress-rate we let ¢ = yo,
and a stress-rate increase corresponds to y> 1. A stress-rate decrease with continued loading
corresponds to 0< y <1, and a stress-rate reversal (unloading) corresponds to y <0. From the
definition of total strain

+

gl
"

x|~
Q-

(36)

Using (36) both before and after the stress-rate jump resuits in a relationship between the
stress-strain slopes before and after the jump. For Models I, II and IV at the point of the jump

o-els e/ @

We cannot obtain a similar relationship for Model III, but a transcendental equation for the
siope doide” can be solved numerically.

We examine the rate changes in regions where the steady-state conditions approximately
apply; where dojde” < E. The slopes of Models I, I and IV before and after jumps in the
strain- (stress-) rate are related only by the ratio § (y). However the slopes of Model III are
related both by the ratio & (y) and the value of the strain- (stress-) rate preceding the jump,
and this causes significantly different responses for Model III. For a large strain-rate increase
(decrease) the terms with 1/6 are negligible (dominant) in (34), and for a large stress-rate
increase {decrease) the terms with 1/y are negligible (dominant) in (37). For Model III the terms
with 8 and y are neither dominant nor negligible. The effects of large rate increases and
decreases are summarized in Table 2 and demonstrated in Figs. 3-10 for Models I-IV.

We compare the response following the strain-rate change with the response which occurs

Table 2. Stress-strain slopes immediately following large strain- (stress-) rate increases and decreases

Approximate Large § Small & Large ¥ Small v
:? for: §>>1 0<4<<1 ¥>>1 0<y<<l
E do”
lHodela 1, 1I, Iv E -3 E Y I
E Small

[Hodcl II1 Positive <E { Negative >--5- Positive <E Positive
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through initial loading at the strain-rate ¢*. For reference the response to initial loading at the
rate €* is called the “‘pure response,” and the response to loading with the combined rates ¢,
€" is called the “jump response.”

For Model II the approximation (25) applies for the steady-state behavior of the pure and
jump responses, and in both cases the strain-rate in (25) is é*. Consequently the pure and jump
responses merge when the jump response returns to steady-state behavior, and the return to
steady-state is very rapid (Fig. 3). The jump responses to strain-rate increases and decreases
rapidly merge with the corresponding pure responses before significant strain accumulates, and
Model II predicts no significant memory for the prior strain-rate values; it models no strain-rate
history effect (SRHE).t

For Model I the steady-state approximation (27) contains the strain-rate é* for both the
jump and pure responses, and the jump response rapidly returns to steady-state behavior (Fig.
4). However, the plastic work in (27) is different for the two responses, and this causes different
stresses in (27) for the jump and pure responses. The responses remain apart after the jump
response has returned to steady-state behavior, and Model I predicts an SRHE (Fig. 4). The
relative difference between plastic work of the two responses decreases with increasing strain,
and from (27) the responses eventually merge. For the data used here the responses merge very
slowly (Fig. 4).

For Models III and IV the endochronic times in (17) and (19) both have different values for
the jump and pure responses. This causes different steady-state flow stresses for the jump and
pure responses, and Models III and IV demonstrate SRHE’s (Figs. 5 and 6). For each model the
difference between endochronic times of the jump and pure responses, relative to the present
values of {, decreases with increasing strain; the responses eventually merge. For the data and
strain-rates used here the SRHE’s last over very large strain.

DISCUSSION
At the strain-rate 1075 s™' the responses of Models I, Il and IV are very similar, but at higher
strain-rates the responses of Model I differ distinctly from the responses of Models II and IV
(Figs. 1, 3-5). Models II and IV predict rate-independent steady-state slopes, and fitting the
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Fig. 1. Stress-strain responses for Models 1TV at the two strain-rates used to fit data. Models II-IV predict

the same constant, rate-independent steady-state slopes while Model I predicts nonconstant and rate-
dependent slopes.

Fig. 2. Responses of Models I, Il and IV at various constant stress- (strain-) rates. Different rates are used

for each model to provide spacing between the responses, and the applied stress-rate is always 360 Ksi

times the applied strain-rate. For each model the transition to steady-state is more gradual in stress-contro,
and the responses of Model Il (Model 1V) coincide in stress- and strain-control.
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Fig. 3. Stress-strain responses of Model I at various constant strain-rates and following strain-rate jumps.
The large strain-rate increase produces ciastic siope while the strain-rate decrease produces negative slope
and decreases in stress. The equilibrium responses g{ } is also shown.

Fig. 4. Responses of Model I for the same piecewise constant strain-rates of Fig. 3. The plastic work in the
flow law produces a strain-rate history effect, and the responses merge after very large strain.

models to the same experimental slope at 107° s™' causes identical steady-state slopes for these
models at all strain-rates. This permits their steady-state responses to approximately coincide at
all strain-rates (Figs. 1, 3 and 5). For Model I the plastic work in (28) is different for different
stress—strain responses, and this causes the steady-state slopes for Model I to be rate-
dependent. At higher strain-rates the steady-state slope for Model [ is significantly greater than
the slopes for Models II and IV, and this causes the differences between the steady-state
responses of Model I and Models II, IV. This difference between responses also occurs at
strain-rates below 107°s™', although the difference is harder to see for the scale of Figs. 3-5.
The responses of Models I, I, and IV rapidly attain steady-state at small strain, while the resp-
onses of Model III require much larger strain before reaching steady-state (Fig. 1). Different
functions may be used in the constitutive equations to modify the sharp (gradual) transitions to
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Fig. 5. Responses of Model [V for the same piecewise constant strain-rates of Figs. 3 and 4. The
endochronic time models a strain-rate history effect opposite that of Model I in Fig. 4. Responses from the
origin appear elastic despite lack of a yield surface.
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steady-state behavior. For Models I and Il the functions F[ ] and g[ ) respectively may be
changed to modify transient stress-strain responses while the flow laws remain
unchanged [47, 57].7 Alternatively for Models III and IV the flow laws must be changed to
change the transient responses[39]. Here we compare qualitative predictions of the models and
do not attempt to fit transient experimental behavior. ]

The use of the steady-state approximations to fit the models to data requires that the data
points correspond to regions of steady-state solutions to the constitutive equations. In Table 1
the difference between the experimental data point and the numerical response of Model III at
the strain-rate 177 s™' occurs because the computed response has not yet reached steady-state
at the strain of this data point.

From (13) the constant strain-rate responses of Model I are bounded while the responses of
the other models are unbounded.} The stress of Model I may reach its bound cither at
infinitesimal strain or at extremely large strain depending on the data fitted and the represen-
tation of F[ ]. In (8) the endochronic time is unbounded in strain, but in (1) F[ ] is bounded in
the plastic work, and the fact that F[ ] is bounded causes the bounded responses of Model 1.
This suggests a possible increase in the flexibility of Model I by using an unbounded F-function
to obtain unbounded responses similar to the predictions of other models. The dependence of
F[ ] upon plastic work and the impact of F[ ] upon stress—strain behavior through (27) and (28)
make determination of a suitable unbounded function difficult, and none has been obtained thus
far.

When (9) approximately applies the response from Model I paraliels the equilibrium
response gl ] for any strain-rate (Fig. 3). Similarly the steady-state response of Model III
parallels the curve represented by U[{, €] in (17) and (18), and the response of Model IV in (19)
parallels the curve represented by (¢, + dp) U[{, é,11/co. However U[ ] does not represent an
equilibrium stress-strain curve. While g[ ] is rate-independent and a lower bound for the
stress-strain behavior in monotonic loading, U[ ] is rate-dependent and decreases with
decreasing strain-rates.

For each of the models in Fig. 2 the rates in the stress- and strain-controlled tests are related
by the constant ratio do/é,. This ratio corresponds to the constant steady-state slopes in (10)
and (16) but not the nonconstant slope in (28). While the steady-state responses of Models II
and IV in stress- and strain-control respectively merge, the responses of Model I do not merge
(Fig. 2). These tests also may be performed with Model III, and the responses merge. The
predictions may be compared with similar experiments in order to favor selection of a particular
theory.

Each model predicts sharper responses in constant strain-rate loading than in constant
stress-rate loading because of the different stress-strain nonlinearity of the constitutive equa-
tions; e.g. eqns (22) and (23) and Fig. 2. The steady-state limits are attained more slowly in
stress-control than in strain-control, and this represents a bias between the responses which
each model predicts in stress- and strain-control. The difference between transient responses in
stress- and strain-control increases with increasing stress- (strain-) rates (Fig. 2).

Models I, IT and IV predict approximately elastic slopes for the responses immediately
following large strain-rate increases; Table 2 and Figs. 3-5. Additional models not examined
here will also predict elastic slopes providing their plastic strain-rates do not jump with an
instantaneous change in the total strain-rate. However, Model III predicts less than elastic slope
following the same large strain-rate increases (Fig. 6). This prediction differs from the elastic
slopes reported in experiments[1-3, 6-8, 10, 12] and supports selection of Models I, II and IV
over Model II.

For Models I, II and IV a large strain-rate decrease (e.g. 8 = 107%, 10~*) immediately causes
large negative stress-strain slope; Table 2, Figs. 3-5. The stress decreases as strain increases.
With further straining the slopes become positive again, and stress and strain both increase
again. Model III also predicts negative slopes immediately following large strain-rate decreases,
but the magnitude of the slope is significantly less than that of the other models (Fig. 6).

tSome choices for constants in F[ ] and for representatiohs of F[ ] cause stress-strain responses with temporarily
increasing slopes; with upward curvatures.

iThe finite-deformation representation of Model 1[45] requires separate examination of the infinite-time limits and
steady-state approximations.
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All four models predict biases between responses following sudden changes in the stress-
and strain-rates (Figs. 3-10). A large stress-rate increase produces elastic slope in the responses
of Models I, II and IV. However, y must be orders of magnitude greater than & to obtain the
same approximation of elastic slope. Model III predicts inelastic slope following large stress-
rate increases, and again y > § in order to obtain the same slopes after stress- and strain-rate
increases. As part of this bias the jump responses return to steady-state behavior more quickly
after strain-rate increases.

All of the models show a strong bias between the responses to sudden stress- and strain-rate
decreases. Large stress-rate decreases produce positive stress-strain slopes while large strain-
rate decreases produce negative slopes (Figs. 3-10). The servocontrolled experiments in [2]
support these different predictions. Because of the small slope following a stress-rate decrease,
small increases in stress produce very large increases in strain.

Model II demonstrates stress-rate history effects although it does not predict strain-rate
history effects, and this is part of its bias between responses in stress- and strain-control (Fig.
7. The stress-rate history effect occurs after a stress-rate increase because the soft response in
stress-control returns to steady-state behavior slowly over significant strain. Because of its
small slope, the response to a stress-rate decrease also requires significant strain to return to
steady-state behavior, and this causes a longer stress-rate history effect. In (21) the limiting
overstress is identical for the response to a stress-rate increase (decrease) and the correspond-
ing pure response, and the stress-rate history effect fades away when the responses return to
steady-state and merge.

Models I, IIT and IV also predict stress-rate history effects becaunse of the soft responses to
stress-rate increases and the small slopes corresponding to stress-rate decreases (Figs. 8-10).
The plastic work and endochronic time have different values for the responses to stress-rate
increases (decreases) and the pure responses, and this causes stress-rate history effects which
remain after the responses return to steady-state; which last over large strain.

The biases between responses in stress- and strain-control indicate need for caution in
performing and interpreting experiments which are linked with these theories. It is important to
reliably categorize experiments as stress-controlled, strain-controlled, or neither, in order to
compare the experiments and theories. Additional biases corresponding to stress- and strain-
rate reversals are detailed in [58].
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Fig. 6. Responses of Model III for the piecewise constant strain-rates of Figs. 3-5. The strain-rate increase
produces inelastic slope.

Fig. 7. Responses of Model II at constant stress-rates and following stress-rate jumps. The large stress-rate
increase produces elastic slope, and the stress-rate decrease produces extremely small, positive slope.
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strain-control.

Fig. 9. Stress—strain responses of Model IV for the piecewise constant stress-rates of Figs. 7 and 8. The
stress-rate history effect parallels the model's strain-rate history effect and the jump and pure responses
cross.

Models I, III and IV predict SRHE's because their fiow laws contain continuous measures
of past plastic deformation through W,, and { Large strain-rate changes produce large
differences between the plastic work and endochronic time of the jump and pure responses,
causing large strain-rate history effects and large strain-intervals before responses merge. Model
II predicts no SRHE because the jump response rapidly returns to steady-state behavior and
because the model has no continuous memory for prior deformation during monotonic
loading.t

The difference in the definitions of W, and { results in opposite manifestations of the
SRHE for Model I and Models III, IV (Figs. 4-6). The response of Model I to a strain-rate
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tModel II has discontinuous memory for prior plastic deformation during cycling(58, 59].
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increase remains below the corresponding pure response curve while the jump response of Model
IV following a strain-rate increase crosses above the pure response. The jump response of Model
11 also crosses above the pure response, but more gradually and after a larger interval of strain.

Because the plastic work in Model I is greater for the pure response than for the jump
response, F[ ] is greater for the pure response, and the responses of Model I cannot cross. In
Models II and IV the endochronic time is smaller for the pure response than for the jump
response, and this distinction permits the responses to cross. The difference between W, and {
also causes the different strain- (stress-) rate history effects of Model I and Models III, IV
corresponding to strain- (stress-) rate decreases.

The different SRHE’s indicate ways in which the constitutive equations of all the theories
may be modified to represent different manifestations of memory for prior plastic deformation.
Experiments with different metals[1-3, 6-8, 10, 12, 16, 22] support the different predictions of
Models L, II, and IV.

Modeis I-IV do not use yield surfaces, and the flow laws apply at all times. At the start of
loading from the origin the plastic strain-rates are zero, and their growth is gradual. The initial
responses are approximately linear, and the regions of linear behavior increase with increasing
strain-rates. At low stresses the initial linear responses approximate elastic behavior, but at
higher stresses the linear responses are significantly inelastic. This distinction is highlighted by
the creep and relaxation behavior predicted at stress-strain points within these linear regions.

At low stress, such as 5 Ksi, Models I, II and IV predict no creep or relaxation for time up to
10° yr. At larger stresses these models predict significant creep and relaxation after preloading
within the regions of initial linear stress-strain behavior (Table 3). After preloading to 28 Ksi
the creep responses of Models IT and IV remain very close for large times up to 10° yr, but at
higher stresses such as 56 Ksi the difference in these responses increases rapidly for a time
scale in years (Table 3). For Model I the creep response at 28 Ksi paralleis the responses of
Models II and IV for times up to years, but at large stress (56 Ksi) the creep response of Model
1 is extremely large. The large creep response makes Model I impractical for the representation
of creep behavior for the data fitted here.

For Model II the creep response is bounded by the equilibrium response g{ ], and creep
terminates when the total strain equals g'[o][43). For Model IV the creep-rate continually
decreases as strain increases, and for Model I the creep-rate reaches a constant, steady-state
value after the plastic work increases and F[ ] becomes constant.

After preloading in a region of linear stress-strain behavior, or after preloading to regions of
steady-state behavior, the relaxation responses of Models I, IT and IV agree closely over large
times exceeding 10° yr (Table 3). At extremely large time the equilibrium response g[ ] provides

Table 3. Creep and relaxation responses of Models L, Il and IV

Initial Stress 28 Ksi 56 Ksi

Initial Strain 12 2%

Time 10% o {10 yr {10 yr | 10% & Jr0t yr J10® yr
‘;:;:‘1’ e 117 | 457 fo.82 | 10° | 100 | 10??
e T 1.26 | 3.03 {343 Je2 Juor |1
[:E;:‘; b 1.3 | 3.79 ] 486 |13.0 {180 | z0.1
[xi:l"‘;“:'f“‘“ 2009 §16.3 J14.6 | 215 J1e8 | 151
‘H:::’l“ﬁ"““f“‘“ 20.1 | 15.6 | 14.7 ] 20.9 | 16.4 | 15.5
:dl:’l“;“f:‘i"‘“ 20,7 | 15.6 | 13.8 ] 20,9 | 15.7 | 139

The creep and relaxation responses correspond to preloading in the
region of initial linear behavior. The creep responses of Model III
match the creep responses of Model IV.
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a lower bound for the relaxation stress of Model II while the stresses of Models I and IV
continue to relax to zero. However, this distinction is not significant for times shorter than
centuries.

Model III does not predict any relaxation behavior. However, it predicts creep behavior
nearly identical to the creep responses of Model IV. A negligible difference between responses
occurs because of different values of K, in the K-functions of these models.

Models I, II and IV predict relaxation from 28 Ksi which is much faster than the experimental
relaxation in [1], and at 30s the predicted stress-decrease is approximately four times the
experimental value. The models need increased flexibility in order to represent both the
relaxation and stress-strain behavior of this material. They need additional, separate reposi-
tories for modeling relaxation (creep) behavior and modelling stress-strain behavior so that
experimental relaxation- (creep-) rates can be matched after the steady-state stress—strain
behavior has been prescribed.

Because Model II has no memory for the prior strain-rate history, it predicts identical
relaxation (creep) responses after preloading to the same point with different strain-rate
combinations. Alternatively the plastic work and endochronic time in Models I and IV have
different values for different strain-rate histories, and the relaxation (creep) responses of these
models are slightly different when different strain-rate histories are used to preload to the same
stress—strain point.

Similarly relaxation causes small changes in the plastic work and endochronic time of
Models I and IV. Reloading after relaxation produces a steady-state stress-strain response which
differs slightly from the original pure response free of relaxation. For Model II the response to
reloading after relaxation coincides with the original, pure response.

Acknowledgement—Contributions from Dr. Erbard Krempl are gratefully acknowledged. This work was supported by the
National Science Foundation.

REFERENCES
. E. Krempl, An experimental study of room-temperature rate sensitivity, creep, and relaxation of aisi type 304 stainless
steel. J. Mech. Phys. Solids 27, 363-375 (1979).
2. D. Kujawski, V. Kallianpur and E. Krempl, An experimental study of uniaxial creep, cyclic creep, and relaxation of
aisi type 304 stainless stee] at room temperature. J. Mech. Phys. Solids 28, 129-148 (1980).
3. D. Kujawski and E. Krempl, The rate- (time-) dependent behavior of the Ti-7Al-2Cb-1Ta titanium alloy at room
temperature under monotonic and cyclic loading. Trans. ASME, J. Appl. Mech. 48, 55-63 (1981).
4. C. Albertini and M. Montagnani, Dynamic uniaxial and biaxial stress-strain relationships for austenitic stainless steels.
Nucl. Engng Design 57, 107-123 (1980).
5. C. Albertini and M. Montagnani, Wave propagation effects in dynamic loading. Nucl. Engng Design 37, 115-124 (1976).
6. P. E. Senseny, J. Duffy and R. H. Hawley, Experiments on strain-rate history and temperature effects during the
plastic deformation of close-packed metals. Trans. ASME, J. Appl. Mech. 45, 60-66 (1978).
7. A. M. Eleiche and J. D. Campbell, Strain-rate effects during reverse torsional shear. Exp. Mech. 16, 281-290 (1976).
8. J. D. Campbell and T. L. Briggs, Strain-rate history effects in polycrystalline molybdenum and niobium. J. Less
Common Metals 40, 235-250 (1975).
9. B. Dodd, R. C. Stone and J. D. Campbell, The strain-rate sensitivity of 304L avstenitic stainless steel in uniaxial
tension. Oxford University Rep. 1069/73 (1973).
10. R. A. Frantz, Jr. and J. Duffy, The dynamic stress—strain behavior in torsion of 1100-0 aluminum subjected to a sharp
increase in strain rate. Trans. ASME, J. Appl. Mech. 39, 939-945 (1972).
11. J. E. Lawson and T. Nicholas, The dynamic mechanical behavior of titanium in shear. J. Mech. Phys. Solids 20, 65-76
(1972).
12. T. Nicholas, Strain rate and strain-rate history effects in several metals in torsion. Exp. Mech. 11, 370-374 (1971).
13. S. K. Samanta, Dynamic deformation of aluminum and copper at elevated temperatures. J. Mech. Phys. Solids 19,
117-135 (1971).
14. J. Klepaczko, Effects of strain-rate history on the strain hardening curve of aluminum. Arch. Mech. Sto. 19, 211-228
(1967).
15. C. J. Maiden and S. J. Green, Compressive strain-rate tests on six selected materials at strain rates from 10~ to
10* sec™'. Trans. ASME, J. Appl. Mech. 33, 496-504 (1966).
16. R. N. Orava, G. Stone and H. Conrad, The effects of temperature and strain rate on the yield and flow stresses of
alpha-titanium. Trans. ASME 59, 171-184 (1966).
17. C. H. Karnes and E. A. Ripperger, Strain rate effects in cold worked high-purity aluminum. J, Mech. Phys. Solids 14,
75-88 (1966).
18. K. Hoge, Influence of strain rate on mechanical properties of 6061-T6 aluminum under uniaxial and biaxial states of
stress. Exp. Mech. 6, 204~211 (1966).
19. U. S. Lindholm and L. M. Yeakley, Dynamic deformation of single and polycrystalline aluminum. J. Mech. Phys.
Solids 13, 41-52 (1965).
20. U. S. Lindholm, Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317-335 (1964).

—



1004 E. P. CErNOCKY

[ad
—

2 8B B3I B R BB

mg:—i

1

[
~

b 3

g 8 3 8 2
<
3
>

&

4.

42.

43.

45.

41.

49.

51.
52,

53.

55.

57.

. C. J. Maiden

e ;]

. E. Hauser, J. A. Simmons and J. E. Dorn, Strain rate effects in plastic wave propagation. In Response of Metals to
High Velocity Deformation (Edited by P. G. Shewmon and V. F. Zackay), pp. 93-114. Interscience, New York (1961).
Z.S.Bumhand.l W. Christian, The influence of temperature and strain rate on the flow stress of anpealed and
snbam temperatures. Australian. J. Phys. 13, 299-308 (1960).

D. Campbell, The static and dynamic strength of a carbon steel at low temperatures. Phil. Mag. 3,

D. N. Robinson, Some trends in constitutive equation model development for high-temperature
t-reactor structural alloys. Nucl Engng Design 48, 269-276 (1978). .
. Robinson aad C. E. Pugh, Bebavior of annealed type 316 stainless steel under monotonic and cyclic
temperature. Nucl, Engng Design 47, 115-123 (1978).
F. L. Yaggee, Stress relaxation in solution-annealed and 20 per cent gold-worked type 316
6A, 1835-1837 (1975).
e ”us). Li, Stress relaxation and mechanical equation of state in austenitic strainless steels. Met.
(
W. N. Findley, Short-time, biaxial creep of an aluminum alloy with abrupt changes of temperatire and
of stress. Trans. ASME, J. Appl. Mech. 38, 489-501 (1971).
n, Inelastic deformation of an aluminum alloy under combined stress at elevated temperature. J. Mech.
383-396 (1970).
T. Onat, Non-linear mechanical behavior of 1100 alumipum at 300°F. Acta Mechanica S, 54-10

D. A. Stuart, An experimental study of the propagation of transient longitudinal deformations in
ic media. Trans. ASME, J. Appl. Mech. 20, 427-434 (1953).
mx’Ct;;:,thtolmm”tbpmmmohpIuﬁcsMMMmamdbar.l.
1085 (1
. Stein, The incremental loading wave in the pre-stressed plastic field. J. Mecanique 1, 395-412 (1962).
H. L. D. Pugh, Velocity of torsional waves in metals stressed statically into the plastic range. J. Mech.
153164 (1968).
. A. Richardson, Jr., The strain-rate effect and the incremental plastic wave in copper. Exp. Mech. 9,

and A. R. Dowling, The bebaviour of materials subjected to dynamic incremental shear loading. J.
Pkys. Solids 43-63 (1970),

M”If) Sharabi, Strain-rate dependent plasticity in thermo-mechanical transient analysis. Nucl. Engng
(1

. C. Wu, Strain-rate effect in the endocluomc theory of viscoplasticity. Trans. ASME, J. Appl. Mech.

-

§

)
L1

H
L

B
B

?%z

£

r.

;
i
ot
i

FoRES
it Egi
Es

ApEf =S¥

g

E

T
By
‘igags

o)
=
g
E

%@

&
g 35;&

?

-+
£
z

C Yip, Strain rate and strain rate history cffects on the dynamic behavior of metallic materials. Int. J.
s 16, $15-536 (1980).

and H. Watson, Jr., The relationship between the constitutive equation and one-dimensional wave
In Mnhuicnly Bdmmofmwids Under Dynamic Loads (Edited by U. S. Lindholm), pp. 294-313.
New York (1968).

, A generalized theory of strain-rate-dependest plastic wave propagation in bars. J. Mech. Phys. Solids 12,

(1964).

constitutive equations in dynamic plasticity. In Problems in Plasticity (Edited by A. Sawczuk),
pp 287-310. Nordhoff, Leyden (1974).
E. P. Cernocky snd E. Krempl, A aoanlinear usiaxial integral constitutive equation incorporating rate effects, creep, and
relaxation. Int. J. Non-Linear Meck. 14, 183-203 (1979).

5

er-Vi

{
d

E‘E

. E. P. Cernocky and E. Krempl, A theory of viscoplasticity based on infiaitesimal total strain. Acta Mech. 36, 263-289

(1980).
S. R. Bodaer and Y. Partom, Constitutive equations for elastic-viscoplastic strain-hardening materials. Trans. ASME, J.
Appl. Mech. 42, 385-399 (1975).

. S. R. Bodaer and Y. Partom, Constitutive equations for cyclic loading of rate dependent materials. MML Report 51,

Technion (1976).
S. R. Bodner and A. Merzer, Viscoplastic constitutive equations for copper with strain rate history and temperature
effects. Trans. ASME, J. Engng Mat. Tech. 109, 388-394 (1978).

. E. W. Hart. Constitutive refations for the nonclastic deformation of metals. Trans. ASME, J. Engng Mat. Tech. %8,

193-201 (1976).
R. W. Rhode and J. C. Swearengen, Deformatioa modeling applied to stress relaxation of four solder alloys. Trans.
ASME, J. Engng Mat. Tech. 102, 207214 (1980).

. A. Miller, Aa inelastic constitutive model for monotonic, cyclic and creep deformation, Parts [ and I1. Trans. ASME, J,

Engng Mat. Tech. 98, 97-113 (1976).

P. P. Gillis, Linearly viscoplastic material. J. Appl Phys. 48, 2845-2849 (1977).

J. H. Gittes, Development of constitutive reiation for plastic deformation from a dislocation model. Trans. ASME, J.
Engng Mat. Tech. 98, 52-59 (1976).

A. R. S. Ponter and F. A. Leckie, Constitutive relationships for the time-dependent deformation of metals. Trans.
ASME, J. Engng Mat. Tech. %8, 41-51 (1976).

. V. V. Sokolovsky, The propagation of elastic-viscous-plastic waves in bars. Prik. Matematika i Mekhanika 12, 261-280

(1948).
L. E. Malvern, The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate
effect. Trans. ASME, J. Appl. Mech. 18, 203-208 (1951).

. P. M. Naghdi and S. A. Murch, On the mechanical behavior of viscoelastic/plastic solids. Trans, ASME, J. Appl. Mech.

30, 321-328 (1963).
E. P. Cernocky and E. Krempl, Construction of nonlinear monotonic fuactions with selectable intervals of almost
constant or linear behavior. Trans. ASME, J. Appl. Mech. 45, T80-784 (1978).



An examination of four viscoplastic constitutive theories in uniaxial monotonic loading 1005

58. E. P. Cernocky, Comparison of the unloading and reversed loading behavior of three viscoplastic constitutive theories.
Int. J. Non-Linear Mech., forthcoming.

59. E. P. Cernocky and E. Krempl, A theory of thermoviscoplasticity based on infinitesimal total strain. Int. J. Solids
Structures 16, 723-741 (1980).

60. M. C. M. Liu and E. Krempl, A uniaxial viscoplastic model based on total strain and overstress. J. Mech. Phys. Solids
27, 377-391 (1979).

61. K. C. Valanis, A theory of viscoplasticity without a yield surface—l. Arch. Mech. Sto. 23, 517-533 (1971).

APPENDIX
Materials functions and properties used in the numerical experiments

(1) E=28,000 Ksi :—:=360Ksi at e=001, é=10"s"",
(2) Parameters corresponding to Model I and FT ] in eqn (29).

bo = 1.02367 ay=1.1158x10"s™"
o= 1531.04 Ksi f1=663.67 Ksi f=1Ksi"\.

(3) Parameters and functions corresponding to Model I1.
The g{ ]-function is selected from [57):

= (E-E) cosh{ U}
#1= B T3 % otV

where U = R(X; +€)-3, V= R(X, - €)-3, E, = 360Ksi, X, =0.0016752 and R = Ry, = 3.63/X;. To fit two data points we
select a k[ }- function with two constants

kio—gl= A expl- Blo - g['*]

where A = 14354477 x 10° 5 and B = 25424278 Ksi ™.

(4) Parameters corresponding to Models III and IV and to K[ ] in eqn (7).
dy =200 Co=76.718 dy Ao =exp[KJK()K, By =K,
Model 11 K, =0.0539883 K, =0.0022286 K,=1s
Model IV K, =0.0539595 K, =0.0022286 K,=1s.



